OPTIMISING A NOVEL WINGLET FOR USE ON A WIND TURBINE BLADE

JAKUB VINCALEK, SEAN WALTON, BEN EVANS

Computational Foundry

Ffowndri Gyfrifiadol

AERODYNAMICS

Blade creates lift through a pressure difference

The winglet creates a barrier between the upper and lower surface

Air moves from a region of high pressure to low pressure

Calculations of aerodynamic properties is "slow" using CFD

PARAMETERISATION

the outer winglet profiles are symmetric

SIZE **ECCENTRICITY**

PARAMETERISATION

Each profile has 3 associated parameters that can be changed

A total of 18 parameters define the shape of the duct

Y-AXIS SHIFT

OPTIMISATION

Initial Design

 Use design from patent and conduct Trefftz plane analysis to measure wake

Design of Experiments Create additional designs based on results from initial design

Genetic Algorithm Breed designs from DoE together to automatically create new designs

Bayesian Optimisatior Create surrogate function to identify areas of interest

OPTIMISATION

Duct measurements taken from patent

Modified slightly to conform to ellipses

Initial Design

Design of Experiments

Genetic Algorithm Bayesian Optimisation

OPTIMISATION 5 different geometries created based on results from initial design Worse Wake Strength Better Iteration Design of Genetic Bayesian Initial Design Experiments Algorithm Optimisation

Iteration

OPTIMISATION

4 new designs created every generation from a population of 6 (two elites)

Tournament selection Single point crossover

3 generations run

+ Could be run in parallel

- Small population size

Initial Design

Design of Experiments

Genetic Algorithm Bayesian Optimisation

OPTIMISATION

1 new designs created every generation

EGO algorithm

3 generations run

- + Surrogate model which uses previously run data to generate new suggestions
- Serial computation
- Difficult to constrain duct profiles
- Meshing issues

Initial Design

Design of Experiments

Genetic Algorithm Bayesian Optimisation

FUTURE WORK

Reducing the number of parameters to make optimisation easier

Running simulations across a range of angles of attack to improve design robustness

Introducing visualisations during the optimisation process to further engage engineers in the design process

THANK YOU

Faculty of Science and Engineering, Swansea University

EPSRC Centre For Doctoral Training in Enhancing Human Interactions and Collaborations with Data and Intelligence Driven Systems

@jakubvincalek