InCell Analyser ### **F**EATURES - Software and hardware autofocus - · Slide, whole well and plate imaging - Liquid handling - Temperature control - Selected polychroics, filters, and objectives - Automated objective, correction collar and polychroic changing - Image restoration options - Fluorescent, Bright-field, Differential interference contrast (DIC) and Phase-contrast imaging modes - 3-D Analysis, Developer and Spotfire Image analysis toolboxes ### **BENEFITS** - Speed maximised without compromising image quality. - More statistically robust results due to larger capture of cells in one image. - Flexible tool -ideal for unique and challenging assays. The InCell Analyser 2000 makes even the most challenging high-content assays an everyday reality. High-content analysis provides multiplexed, quantitative data based on automated cell imaging, allowing you to answer complex questions rapidly, in a true biological context. - From investigative microscopy to automated high-content screening - From organelles to cells to tissues to whole organisms - From fixed end-point assays to extended live-cell studies The InCell Analyser 2000 delivers accurate, high-speed imaging through a combination of proprietary optics and fast hardware and software autofocus for screening applications. A bright light source reduces exposure times to further maximize speed without compromising image quality and cell health. Confocal-like images can be obtained with the rapid image restoration options. # CASE STUDY ### **NC3Rs Project** Developing an integrated "in vitro carcinogenicity predictive tool" Utilising Multiple Toxicological Tests #### Aims of Project: - Improve the in vitro prediction of carcinogenicity - Design a better in vitro safety assessment strategy - Reduce misleading positives and the expense and animal tests wasted on pursuing these #### NANOPARTICLE CYTOMETRICS A quantitative analysis of the toxic effect of nanoparticles - Aims of Project: Deliver a fully calibrated metrology that provides information on nanoparticle dose per cell (typically a million cells). - Provide a fundamental understanding of the way in which nanoparticle dose is acquired by cells through natural uptake mechanisms (endocytosis). - How nanoparticle dose is diluted within growing tissue as particles are divided between daughter cells upon cell division (mitosis). - Study any toxic effects of nanoparticles on the cells and provide quantification of potential nanotoxicity across different cell types ## **APPLICATIONS** | AREA OF INTEREST | FEATURES | A PPLICATIONS | |--------------------------|---|--| | LIVE-CELL ASSAYS | Variable temperature control (up to 42°C) Environmental control module Hardware optimized for optical performance Reduced exposure times Cell tracking software Fast hardware autofocus | Time-course analysis Temperature-sensitive mutations Cell migration Cell lineage/cycle studies Stem cells Kinetic studies Predictive toxicology | | Speed | Large chip CCD camera Bright optics with powerful
light source Fast hardware autofocus. Rapid slide imaging | Compound screening Predictive toxicology RNAi screening Slide-based arrays (siRNAs) | | Sensitivity & Resolution | High-performance CCD camera Wide range of objectives Rapid image restoration options Combination of Z-axis projection and image restoration | Phenotypic profiling Rapid detection of low and weak fluorescent sensors Micronuclei screening Protein localization Functional studies Antibody characterization Target identification |