

InCell Analyser

FEATURES

- Software and hardware autofocus
- · Slide, whole well and plate imaging
- Liquid handling
- Temperature control
- Selected polychroics, filters, and objectives
- Automated objective, correction collar and polychroic changing
- Image restoration options
- Fluorescent, Bright-field, Differential interference contrast (DIC) and Phase-contrast imaging modes
- 3-D Analysis, Developer and Spotfire Image analysis toolboxes

BENEFITS

- Speed maximised without compromising image quality.
- More statistically robust results due to larger capture of cells in one image.
- Flexible tool -ideal for unique and challenging assays.

The InCell Analyser 2000 makes even the most challenging high-content assays an everyday reality. High-content analysis provides multiplexed, quantitative data based on automated cell imaging, allowing you to answer complex questions rapidly, in a true biological context.

- From investigative microscopy to automated high-content screening
- From organelles to cells to tissues to whole organisms
- From fixed end-point assays to extended live-cell studies

The InCell Analyser 2000 delivers accurate, high-speed imaging through a combination of proprietary optics and fast hardware and software autofocus for screening applications. A bright light source reduces exposure times to further maximize speed without compromising image quality and cell health. Confocal-like images can be obtained with the rapid image restoration options.

CASE STUDY

NC3Rs Project

Developing an integrated "in vitro carcinogenicity predictive tool" Utilising Multiple Toxicological Tests

Aims of Project:

- Improve the in vitro prediction of carcinogenicity
- Design a better in vitro safety assessment strategy
- Reduce misleading positives and the expense and animal tests wasted on pursuing these

NANOPARTICLE CYTOMETRICS

A quantitative analysis of the toxic effect of nanoparticles

- Aims of Project: Deliver a fully calibrated metrology that provides information on nanoparticle dose per cell (typically a million cells).
- Provide a fundamental understanding of the way in which nanoparticle dose is acquired by cells through natural uptake mechanisms (endocytosis).
- How nanoparticle dose is diluted within growing tissue as particles are divided between daughter cells upon cell division (mitosis).
- Study any toxic effects of nanoparticles on the cells and provide quantification of potential nanotoxicity across different cell types

APPLICATIONS

AREA OF INTEREST	FEATURES	A PPLICATIONS
LIVE-CELL ASSAYS	Variable temperature control (up to 42°C) Environmental control module Hardware optimized for optical performance Reduced exposure times Cell tracking software Fast hardware autofocus	 Time-course analysis Temperature-sensitive mutations Cell migration Cell lineage/cycle studies Stem cells Kinetic studies Predictive toxicology
Speed	 Large chip CCD camera Bright optics with powerful light source Fast hardware autofocus. Rapid slide imaging 	 Compound screening Predictive toxicology RNAi screening Slide-based arrays (siRNAs)
Sensitivity & Resolution	High-performance CCD camera Wide range of objectives Rapid image restoration options Combination of Z-axis projection and image restoration	 Phenotypic profiling Rapid detection of low and weak fluorescent sensors Micronuclei screening Protein localization Functional studies Antibody characterization Target identification